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The concentric, two-phase flow of two immiscible fluids in a tube of sinusoidally
varying cross-section is studied. This geometry is often used as a model to study the
onset of different flow regimes in packed beds. Neglecting gravitational effects, the
model equations depend on five dimensionless parameters: the Reynolds and Weber
numbers, and the ratios of density, viscosity and volume of the two fluids. Two
more dimensionless numbers describe the shape of the solid wall: the constriction
ratio and the ratio of its maximum radius to its period. In addition to the effect of
the Weber number, which depends on both the fluid and the flow, the effect of the
Ohnesorge number J has been examined as it characterizes the fluid alone. The gov-
erning equations are approximated using the pseudo-spectral methodology while the
Arnoldi algorithm has been implemented for computing the most critical eigenvalues
that correspond to axisymmetric disturbances. Stationary solutions are obtained for a
wide parameter range, which may exhibit flow recirculation at the expanding portion
of the tube. Extensive calculations are made for the dependence of the neutral sta-
bility boundaries on the various parameters. In most cases where the steady solution
becomes unstable it does so through a Hopf bifurcation. Exceptions to this are cases
where the viscosity ratio is O(10−3) and, then, the most unstable eigenvalue remains
real. Generally, steady core–annular flow in this geometry is more susceptible to
instability than in a straight tube and, in similar ranges of the parameters, it may
be generated by different mechanisms. Decreasing the thickness of the annular fluid,
inverse Weber number or the Ohnesorge number or the density of the core fluid stabi-
lizes the flow. For stability reasons, the viscosity ratio must remain strictly below unity
and it has an optimum value that maximizes the range of allowed Reynolds numbers.

1. Introduction
Concurrent two-phase flow arises in many important scientific and technological

disciplines. For example, concurrent two-phase flow of hydrogen and hydrocarbons
takes place through millimetre-scale tortuous passages created by catalytic particles,
which promote reforming of oil and its byproducts in certain trickle bed reactors. In
this application inertial, viscous and capillary forces are all comparable in magnitude
and none can be neglected a priori (de Santos, Melli & Scriven 1991; Melli et al. 1990).

† Author to whom correspondence should be addressed.
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In the last fifteen years, considerable effort has been put into understanding the core–
annular flow of two liquids, a technique used to facilitate the transport of viscous oil
through a pipeline by lubricating it with a low-viscosity liquid such as water (Joseph
& Renardy 1993). Finally, two fluids flow concurrently through corrugated and nar-
row passages in processes aimed at recovering oil from sedimentary rocks by injecting
primarily water or steam (Payatakes 1982). Different flow regimes arise in all these ap-
plications in which either one or both phases may be continuous or discontinuous and
the flow may be steady, oscillatory or chaotic depending on the operating conditions.

In the case of a trickle bed reactor, it is well known that the different flow
regimes greatly affect the reactor parameters, namely pressure drop, heat and mass
transfer coefficients, reaction rate and liquid holdup. Therefore, the prediction of
the onset of these flow regimes is critical in reactor design and operation. Kouris
et al. (1998) predicted that the effectiveness factors of the chemical reactions in
hydrodesulphurization processes are greatly enhanced when the reactor operates in
the pulsing flow regime, owing to the increased averaged mass transfer coefficient of
the gas phase. Because of their importance, the various flow regimes in packed beds
have been studied extensively both theoretically and experimentally. Macroscopic
models of two-phase flow in packed beds, based on volume-averaged equations of
motion have been developed and solved. A comprehensive review of the related
literature up to 1991 is given in de Santos et al. (1991).

It is believed that the fundamental mechanisms that give rise to the different flow
regimes are rooted at the scale of the pore, where the two phases flow and compete
for the available space. Many experimental studies have been performed to visualize
the microscale hydrodynamics, see for example Melli et al. (1990). These authors, in
particular, have studied the two-phase concurrent down-flow of air and water in a
host of geometries ranging from model arrangements to single vertical constricted
tubes. A popular approximation of the tortuous paths in a packed bed is an array of
parallel conduits of circular cross-section, the radius of which varies sinusoidally in
the axial direction. Although this configuration cannot describe latitudinal dispersion
in the bed or exchange of fluids between nearby conduits, it simulates the converging–
diverging character of the flow in an actual packed bed, which is important and cannot
be described by a straight tube. This model has been used extensively for simulating
the single-phase flow of both Newtonian (Deiber & Schowalter 1979; Lahbabi &
Chang 1986, and references therein) and non-Newtonian fluids (e.g. Pilitsis & Beris
1989). However, no study of two-phase flow in a periodically constricted tube (PCT)
has been reported so far.

On the other hand, many theoretical studies of two-phase flow inside straight tubes
or between parallel plates using standard methods of linear stability theory have been
reported. First, Yih (1967) studied the stability with respect to long waves of plane
Couette flow of two layers separated by a planar interface. He suppressed the effects
of gravity and density differences and examined the viscosity difference between the
two fluids. He found that this flow arrangement is unstable to long-wave disturbances
irrespective of the value of the Reynolds number. Hickox (1971) studied the stability of
Poiseuille flow of two liquids when the less-viscous fluid is centrally located, including
the effects of surface tension and gravity, and showed that all such flows are unstable.
Such arrangements of parallel flows of immiscible fluids in a cylindrical tube in which
one fluid moves in the core of the tube and the other one in the annulus are called
core–annular flows (CAF). Hooper & Boyd (1983) considered the stability of Couette
flow of two fluids separated by a plane layer in an unbounded and infinite region.
They found that the flow is always unstable to very short waves when surface tension
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is neglected. Surface tension stabilizes the shortest waves. Furthermore, Yiantsios &
Higgins (1988) studied the stability of plane Poiseuille flow of two superposed fluids,
identifying not only the modes reported by Yih (1967), but also shear modes which
arise at a high Reynolds number and are associated with Tollmien–Schlichting waves.
Russo & Steen (1989), considering the stability of an annular liquid film flowing down
a rod with a free surface, have shown that shear can stabilize capillary breakup, if
the film is thin enough. This extends the earlier analysis by Xu & Davis (1985).

D. Joseph, Y. Renardy, M. Renardy and co-workers have achieved important ad-
vances in CAF over the last fifteen years. Early on, Joseph, Renardy & Renardy (1984)
studied the stability of Poiseuille flow of two fluids with different viscosities and they
found that this flow with an interface of constant radius is stable provided that the
layer of fluid on the wall of the pipe is less viscous and thin enough. Renardy (1985)
studied the stability of layered Couette flow to disturbances of arbitrary wavelength.
Preziosi, Chen & Joseph (1989) studied the stability of CAF and found remarkable
agreement between their results from linear stability theory and older experiments
(Charles, Govier & Hodgson 1961; Oliemans & Ooms 1986). Linear stability, in spite
its limitations, has been quite successful in the past in accurately predicting, for exam-
ple, the capillary instability of jets (Rayleigh 1879), annular menisci (Tsamopoulos,
Poslinski & Ryan 1988) and instabilities in other single-fluid flows (Chandrasekhar
1981). Hu & Joseph (1989), in addition to performing linear stability analysis of two-
and three-layered concentric fluids, calculated the energy associated with the various
mechanisms and, thus, identified the driving mechanism that leads to instability, which
in turn depends on the parameter values. This idea was employed earlier by Hooper &
Boyd (1983) and later used to classify instabilities in a variety of flows by Boomkamp
& Miesen (1997). Hu & Patankar (1995) studied the stability of CAF of water and oil
in a circular pipe with respect to non-axisymmetric disturbances and Huang & Joseph
(1995) studied the stability of eccentric core-annular flow. Papageorgiou, Maldarelli &
Rumschitzki (1990) studied the nonlinear stability of CAF in straight tubes assuming
that the deviation of the fluid interface from its initial value is small compared to the
thickness of the annular fluid and that, in turn, is small compared to the radius of
the pipe. They found that in the limit of slow flow and moderate surface tension the
contribution of the viscosity stratification is only dispersive, whereas in the case of
fast flow and strong surface tension the contribution of the viscosity difference can be
either stabilizing or destabilizing. Kerchman (1995) extended the analysis of Papageor-
giou, Maldarelli & Rumschitzki (1990) by removing the constraint that the deviation
of the interface from its initial value is quite small. Finally, Joseph et al. (1997) give
additional references on CAF in a straight tube in their review of the subject.

In this work we use the periodically constricted tube to represent the geometry in
a packed-bed reactor in which concentric two-phase flow takes place. Our goal is to
predict the operating conditions under which travelling waves arise as bifurcations
of perfect CAF and signal the onset of different flow regimes, and to examine how
our results are related to previous theoretical results reported for the case of a
straight tube. Neglecting gravity, the governing equations, given in § 2, depend on
five dimensionless parameters: the Reynolds and Weber numbers, and the ratios of
density, viscosity and volume of the two liquids. Two more dimensionless numbers
characterize the geometry of the tube wall: the constriction ratio, i.e. the ratio of the
minimum to the maximum radius of the tube, and the ratio of its maximum radius
to its length. Following the necessary transformations, § 3, the method for obtaining
the steady solutions and examining their stability is presented in § 4. In addition, we
calculate the various contributions to the energy budget, § 5. Since instability is also
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manifested by the increase of kinetic energy of an initially small disturbance with time,
comparing contributions to this balance coming from the bulk of either fluid or from
interfacial terms which are related either to capillarity or viscosity contrast indicates
the dominant mechanism of instability. An additional mechanism for instability exists
in the case of a constricted tube compared to those in a straight tube: the interface
of the base state varies in the axial direction and so it has two radii of curvature
modifying the capillary forces and generating additional friction against the flow. The
governing equations are solved using the psuedo-spectral method, § 6. According to
it, every dependent variable is approximated by Chebyshev polynomials in the radial
direction and Fourier modes in the axial direction. For both stationary calculations
and linear stability, convergence of results is checked numerically by comparison
with analytical solutions or previous numerical studies, which are valid in limiting
cases, § 7. New stationary solutions are obtained for a wide parameter range, § 8. The
boundaries of the regions of linear stability of CAF in constricted tubes are identified
by calculating the eigenvalues of the system using the Arnoldi algorithm. Temporal
stability of the axisymmetric base state is examined to two-dimensional disturbances
using the streamfunction–vorticity formulation, § 9. Conclusions are drawn in § 10.

2. Governing equations
We examine the incompressible core–annular flow (CAF) of two Newtonian fluids

in a pipe of circular cross-section the radius of which, R̂2, varies sinusoidally between
the values R̂min and R̂max with axial wavelength L̂, see figure 1. The equation that
governs the radial distance of the solid wall from the axis of symmetry is

R̂2(ẑ) =
R̂max + R̂min

2
− R̂max − R̂min

2
cos

(
2π
ẑ

L̂

)
, 0 6 ẑ 6 NL̂, (2.1)

where, in general, the caret denotes dimensional quantities and N denotes the number
of the repeated geometrical units that are considered to form a long enough section of
the constricted tube. The pipe axis is located at r̂ = 0. The core region, 0 6 r̂ 6 R̂1(ẑ, t̂ ),
is occupied by the first liquid with viscosity and density µ̂1 and ρ̂1, respectively, while
the second liquid (µ̂2, ρ̂2) is located in the surrounding annulus, R̂1(ẑ, t̂) 6 r̂ 6 R̂2(ẑ).
The position vector of the common fluid/fluid interface is defined by

R̂1 = erR̂1(ẑ, t̂) + ez ẑ. (2.2)

The corresponding components of the velocity vector of each fluid are denoted as

Û i = (Ûi, V̂i, Ŵi) = erÛi + eθ0 + ezŴi, (2.3)

where (r̂, θ̂, ẑ) are the cylindrical coordinates, (er, eθ, ez) are the corresponding unit
vectors and t̂ denotes the time variable. Neglecting gravity, the equations that govern
the motion of both fluids as well as the fluid/fluid interface, are the following:

∇ · Û i = 0, (2.4)

ρ̂i
DÛ i

Dt̂
= −∇P̂i + ∇ · τ̂ i (2.5)

DR̂1

Dt̂
= Û i(R̂1(ẑ, t̂), ẑ, t̂), (2.6)
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Figure 1. Schematic presentation of the flow geometry showing the tube wall and
the fluid/fluid interface.

where i = 1 corresponds to the core and i = 2 to the annular fluid. The gradient
operator in cylindrical coordinates and the material derivative are defined in the
usual manner:

∇(·) = er
∂(·)
∂r̂

+
eθ
r̂

∂(·)
∂θ̂

+ ez
∂(·)
∂ẑ

, (2.7)

D(·)
Dt̂

=
∂(·)
∂t̂

+ Û i · ∇(·). (2.8)

Equations (2.4)–(2.6) have to be solved subject to the following boundary con-
ditions:

(i) The velocity field is bounded at the axis of symmetry, zero at the tube wall
and continuous at the fluid/fluid interface. At the same interface the viscous stresses
exerted by either fluid are balanced by capillarity:

Û 1 finite on r̂ = 0, (2.9)

Û 2 = 0 on r̂ = R̂2(ẑ), (2.10)

‖Û‖ = 0 on r̂ = R̂1(ẑ, t̂), (2.11)

(−‖P̂‖ − 2ĤT̂ )n+ ‖τ̂‖ · n = 0 on r̂ = R̂1(ẑ, t̂), (2.12)

where τ̂ i = µ̂i(∇Û i + ∇ÛT

i ) is the extra stress tensor of each fluid, 2Ĥ ≡ −∇ · n|r̂=R̂1

is twice the mean surface curvature of the fluid/fluid interface, T̂ is the coefficient
of the surface tension, (n, t) are the unit vectors normal and tangent to the surface
r̂ = R̂1(ẑ, t̂) respectively, while the normal vector is directed from fluid 1 to fluid 2
and ‖ · ‖ ≡ (·)1 − (·)2 denotes the jump of the bracketed quantitiy over r̂ = R̂1(ẑ, t̂ ).

(ii) In addition to the previous boundary conditions we should impose that the
velocity field, the stress tensor of both fluids, and the fluid/fluid interface are periodic
functions in the axial direction with period the length of the computational domain,
NL̂. It has been found that the length of the computational domain can greatly affect
the stability and dynamics of the two-phase flow (Kouris & Tsamopoulos 2001a)
depending on the wavelength of the critical disturbance, which in turn depends on
the values of the dimensionless numbers. More specifically, if the length of the actual
critical mode were larger than the computational domain, then the associated steady
state would appear to be stable. At this point it is worth noting that the length of the
domain and the effect of the imposed boundary conditions in the axial direction has
never been taken into account, see for example Lahbabi & Chang (1986); Guzman
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& Amon (1996); Amon, Guzman & Morel (1996). In contrast, here special care has
been taken with this effect by increasing the length of the domain and considering as
many geometrical constricted units as computationally possible. Although we have
not completely eliminated this effect, we have reduced it considerably as is shown in
our results.

(iii) Finally, additional overall conditions must be set in order to complete the
problem formulation. It was found that, when the volumetric flow rates of both
phases were set separately, unrealistic and non-converging results were obtained. On
the other hand, setting the volume of the core fluid as well as either total volumetric
flow rate of both phases or the pressure drop to a constant gave realistic results.
Usually, we prefer to impose the former condition and a posteriori compute the
pressure drop, checking in this way the convergence of the steady solutions.

Next, the above equations (2.4)–(2.6) together with the boundary conditions (2.9)–
(2.12) are made dimensionless. The radial coordinate has been made dimensionless
by using the maximum radius of the tube R̂max and the axial coordinate by using
the length L̂/(2π). The characteristic velocity in the axial direction, Ŵo, is chosen so
that the total volumetric flow rate of both fluids equals unity, i.e.

Ŵo =

(∫ R̂1

0

r̂Ŵ1 dr̂ +

∫ R̂2

R̂1

r̂Ŵ2 dr̂

)/
R̂2
max. (2.13)

The characteristic velocity in the radial direction, Ûo, is related to Ŵo by

Ûo =
2πR̂max

L̂
Ŵo. (2.14)

The pressure as well as the components of the stress tensor of each fluid are made
dimensionless by dividing them with ρ̂1Ŵ

2
o , while time is scaled with L̂/(2πŴo). Using

the streamfunction–vorticity foumulation, the characteristic value of the streamfunc-
tion is ŴoR̂

2
max, while the characteristic value of the vorticity is Ŵo /R̂max. After

introducing the above scales into (2.1)–(2.12), the following six dimensionless num-
bers appear: the constriction ratio α = R̂min/R̂max, the aspect ratio Λ = 2πR̂max/L,
the viscosity ratio µ = µ̂2/µ̂1, the density ratio ρ = ρ̂2/ρ̂1, the Reynolds number

Re = (ΛŴoR̂max ρ̂1)/µ̂1 and the inverse Weber number W = T̂ /(ρ̂1Ŵ
2
o R̂max). The

ratio of the volume of the core fluid to that of the tube, V1/VT , does not arise in the
above set of equations, but must be fixed in order to have a well-posed problem.

3. Transformations
The introduction of the streamfunction, Ψi, and the definition of the vorticity,

Ωi, for each fluid, i, permit us to exactly satisfy the mass balances, (2.4), and by
cross-differentiation of (2.5) to eliminate the pressure terms. As a result, the number
of total unknowns and the computational cost are reduced. Equations (2.3)–(2.12) are
transformed using the following relationships:

Ui = −1

r

∂Ψi

∂z
, Wi = −1

r

∂Ψi

∂r
(3.1)

Ωi =
∂Wi

∂r
− ∂Ui

∂z
. (3.2)
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The resulting dimensionless equations are the following:

rΨi,rr −Ψi,r + Λ2 r Ψi,zz − r2Ωi = 0, (3.3)

ρi Re r
2Ωi,t+(ρi ReΨi,z +µi)(Ωi − rΩi,r)+ρi Re r Ψi,r Ωi,z−µi r2(Ωi,rr + Λ2Ωi,zz) = 0,

(3.4)

R1 R1,t + R1,z Ψ1,r +Ψ1,z = 0, (3.5)

where (µ1, ρ1) = (1, 1) and (µ2, ρ2) = (µ, ρ) while the subscripts (r, z, t) imply differen-
tiation with respect to radial and axial distance and time, respectively. The boundary
conditions (2.9)–(2.11) along with the condition of axial symmetry of the velocity
field (U1 = ∂W1/∂r = 0 on r = 0) are expressed in terms of the streamfunction and
vorticity and they become

Ψ1 = −1, Ψ1,r = Ω1 = 0 on r = 0, (3.6)

Ψ1 −Ψ2 = Ψ1,r −Ψ2,r = 0 on r = R1(z, t), (3.7)

Ψ2 = Ψ2,r = 0 on r = R2(z). (3.8)

The constant values of the streamfunction at r = 0 and R2(z) are chosen so that
the total dimensionless volumetric flow rate equals unity. The stress balance given
in (2.12) involves the pressure term. For that reason we need to differentiate this
equation with respect to the axial distance, employing the following identity:

∂

∂z
((·)∣∣

r=R1(z,t)
) ≡ ∂(·)

∂z

∣∣∣∣
r=R1(z,t)

+ R1,z

∂(·)
∂r

∣∣∣∣
r=R1(z,t)

. (3.9)

In this way the resulting equation involves only the derivatives of pressure with respect
to the axial and radial direction respectively, which can be easily eliminated by using
(2.5). The final equations of the normal and tangential force balances are not given
explicitly for brevity. We only note that an additional dimensionless number arises
in the normal force balance, the inverse Weber number. Before proceeding further
it is worth noting the way that we have satisfied implicitly some of the boundary
conditions at the axis of symmetry as well as at the solid surface by introducing the
following transformations:

in fluid 1:

Ψ1 = r2 ψ1 − 1; (3.10)

in fluid 2:

Ψ2 = (r − R2)ψ2. (3.11)

Using the transformations (3.10)–(3.11), the conditions (3.6)–(3.8) reduce to

ψ1,r = 0 on r = 0, (3.12)

ψ2 = 0 on r = R2(z), (3.13)

R2
1 ψ1 − (R1 − R2)ψ2 = 1,

2R1ψ1 − ψ2 + R2
1 ψ1,r − (R1 − R2)ψ2,r = 0 on r = R1(z, t). (3.14)

The benefit of this is that we only have to impose four boundary conditions, (3.12)–
(3.14), instead of seven, (3.6)–(3.8), as the other three are identically satisfied.

The fluid/fluid interfacial conditions must be applied on a moving and a priori
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unknown boundary. In order to correctly and efficiently impose them, we employ the
following non-orthogonal, body-fitted coordinate transformation (r, z, t) → (x1, x2, τ)
which maps it onto the fixed x1 = −1 plane for both fluids:

fluid 1:

x1 = 1− 2
r

R1(θ, z, t)
, x2 =

z

N
, τ = t; (3.15)

fluid 2:

x1 = −1 + 2
r − R1(θ, z, t)

R2(z)− R1(θ, z, t)
, x2 =

z

N
, τ = t. (3.16)

This normalization transforms the boundaries of the region that each fluid occupies
to coordinate lines in the new, transformed space. The bounds of the new independent
variables are

−1 6 x1 6 1, 0 6 x2 6 2π, τ > 0. (3.17)

4. Steady solution and stability analysis
The steady version of the above equations results by setting ∂(·)/∂t = 0. In a

periodically constricted tube the base solution cannot be derived analytically; it must
be calculated numerically using the Newton–Raphson method. Owing to the fairly
complicated form of the equations and to avoid additional matrix manipulations,
the Jacobian matrix is formed numerically and its entries (Ji,j) are defined and then
approximated using the following expressions:

Ji,j =
∂Ri

∂aj
≈ Ri(aj + ∆aj)− Ri(aj)

∆aj
, ∆aj = 0.5× 10−8 max (1, |aj |), (4.1)

where Ri is the residual equation that corresponds to the ith unknown while aj is
the value of the jth unknown. A direct solver for linear equations was used which
employs LU decomposition. Closer to convergence the Jacobian matrix was not
updated in order to reduce the computational cost. Finally, in some cases, especially
with a large Reynolds number or small viscosity or small constriction ratio, it was
found unavoidable to use continuation in the parameter space in order to compute
the basic flow.

After computing the steady axisymmetric solution, denoted by the subscript s, its
temporal stability is examined. To this end, the steady solution is perturbed and the
perturbation variables are denoted by the subscript p. Using the following expansion: ψi(x1, x2, τ)

Ωi(x1, x2, τ)

R1(x2, τ)

 =

 ψi,s(x1, x2)

Ωi,s(x1, x2)

R1,s(x2)

+ δ

 ψi,p(x1, x2)

Ωi,p(x1, x2)

R1,p(x2)

 exp (στ) (4.2)

and omitting terms of order higher than δ, where δ is the perturbation parameter,
one can obtain a generalized eigenvalue problem of the form: Jx = σM x where
J is the Jacobian and M the mass matrix, respectively. In (4.2) σ is the temporal
eigenvalue of the linearized equations. The real part of the eigenvalue, denoted by σR ,
corresponds to the growth rate of the disturbance while the imaginary part, denoted
by σI , corresponds to the temporal oscillation frequency. When the real parts of
all the eigenvalues are negative the steady state is said to be stable to infinitesimal
disturbances and the corresponding steady-state solution is physically realizable, while
when there is at least one eigenvalue with positive real part the steady state is classified
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as unstable. In the limiting case where all the eigenvalues have negative real parts
except for some whose real parts equal zero, then this steady state is said to be
neutrally stable with respect to these disturbances. The Jacobian matrix is in general
invertible, except when an eigenvalue is identically zero. On the other hand, the mass
matrix is always non-invertible because equation (3.3), in addition to certain boundary
conditions, does not involve time derivatives. In order to reduce the computational
cost of storing two square matrices and solving a generalized eigenvalue problem we
transform it first to the equivalent ordinary eigenvalue problem:

(J−1M)x =
σ∗√

σ2
R + σ2

I

x, (4.3)

where * denotes complex conjugate. Clearly when the real part of the most dangerous
eigenvalue of the original problem changes sign, so does the most dangerous one of
the transformed problem, while its eigenvector remains unchanged. This eigenvalue
problem is solved using Arnoldi’s method, which locates only the eigenvalues of
interest, i.e. those with the smallest real part (Saad 1980; Christodoulou & Scriven
1988; Anturkar, Papanastasiou & Wilkes 1991; Huang & Joseph 1995). According to
it, given the matrix A(n × n) another matrix Vm(m × n) is created with columns the
m(� n) linearly independent vectors, ν1,Aν1, . . . ,A

m−1 ν1 which are made orthonormal
to each other using the following iterative sequence:

ν̂j+1 = Aνj −
j∑
i=1

hi,j νj; hi,j = (ν i,Aνj); νj+1 = ν̂j+1/hj+i,j . (4.4)

The coefficients hij form an upper Hessenberg matrix, H , the eigenvalues of which
approximate the eigenvalues of the original matrix. For implementing the Arnoldi
algorithm we have used the commercially available software developed by Lehoucq
& Scott (1996). This code is capable by default of computing the eigenvalues with the
largest magnitude and not those with the smallest real part. We have observed that
in cases where modes with long wavelengths are the most critical ones (Re� 1) then
this software is capable of locating the most dangerous eigenvalues by computing
only 10–20 out of the over 103 eigenvalues. However, in cases with Re� 1 the critical
modes are characterized by short wavelength and large temporal frequencies and,
as a result, the number of eigenvalues that need to be computed increases to, in
some cases, above 300. In none of the cases examined have spurious eigenvalues been
encountered.

It is worth noting here that, due to the periodic constrictions of the tube, the
steady solution is inherently a two-dimensional one and, as result, we cannot study its
stability by adopting the normal mode decomposition in the axial direction as in the
case of the straight tube. In a straight tube the axial dependence of the eigenvectors
is written in terms of decoupled Fourier modes of arbitrary wavenumber and, thus,
a much simpler, one-dimensional eigenvalue problem needs to be solved in the radial
direction. In the present case however, the eigenspectrum is disrupted by the imposed
periodic boundary conditions, hence the wavelength of any disturbance can only be
an integer multiple of the length of the geometry. This observation is valid not only
in CAF, but also in single-phase flow studied by Lahbabi & Chang (1986). Clearly,
knowledge of the axial dependence of the eigenvector not only would simplify the
numerical solution of the problem, but also it would give us the ability to examine
thoroughly the stability of CAF in a large series of undulations. However, due to
computer limitations their number must remain finite and we take every care in order
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to minimize the effects of the periodic boundary conditions by increasing it as much
as possible.

5. Energy analysis
If a steady solution is unstable, the amplitude (and the energy) of initially small

disturbances will grow in time. Although it is clear that this energy is being supplied
by the primary flow, where it is directed and the mechanism by which this takes
place are not clear in general. In a two-phase flow a growing disturbance may
be due to increasing energy in the bulk of either fluid, similar to the mechanisms
in a single-phase flow, giving rise usually to unstable modes of short wavelength.
Alternatively, a growing disturbance may be due to increasing energy at the interface
due to capillary forces or viscosity stratification or from a combination of the above
sources. Examining the energy associated with each one may lead to identification
of the predominant instability mechanism, see Hooper & Boyd (1983), Hu & Joseph
(1989) and Boomkamp & Miesen (1997). Owing to the mapping, (3.15)–(3.16), the
free boundary problem is transformed into an equivalent one with fixed boundaries
and the effect of the interface is reflected by the many additional terms that arise in
the governing equations due to the transformation. Although this transformation is
essential to correctly impose both the interfacial conditions and the conditions at the
wavy solid wall, given the adopted method of solution, it is much more efficient to
use the domain perturbation technique (Joseph 1973) to calculate the various energy
terms in the linearized energy equation. To this end, we transform the computed
eigenvectors and their derivatives back to the ones that we would have obtained
had we adopted the domain perturbation technique. Some details of this complicated
transformation are given in Kouris & Tsamopoulos (2000).

The starting point of the energy calculation is the axisymmetric linearized equations
of motion multiplied by the complex conjugate of the corresponding eigenvector and
integrated over the length of the tube and the thickness of each fluid. Upon application
of the divergence theorem we obtain the following energy terms:

(a) The rate of change of the kinetic energy of the distriburbance for each fluid
(Ei) is defined by the following integral:

Ei = ρi σR

∫
Vi

(
Λ2
(
UR2

i,p +UI2

i,p

)
+
(
WR2

i,p +WI2

i,p

))
dV , (5.1)

where dV = r dr dz and Vi corresponds to the volume that each fluid occupies in the
base state, while the subscripts i and p indicate the ith fluid and the perturbation
solution, respectively and the superscripts R and I refer to the real and the imaginary
part of the eigenvector. Clearly this integral is non-negative and the sign of the real
part of the eigenvalue determines the sign of the rate of change of the kinetic energy
of each fluid. Therefore when σR is positive the disturbance kinetic energy increases
exponentially in time implying an unstable steady state.

(b) The rate of viscous dissipation of the perturbed flow of each fluid (Di) is defined
as

Di = −
∫
Vi

(
τR

2

i,p,rz + τI
2

i,p,rz + 1
2

(
τR

2

i,p,rr + τI
2

i,p,rr + τR
2

i,p,θθ + τI
2

i,p,θθ

))
dV , (5.2)

where τi,p,jk denotes the jkth component of the dimensionless disturbance stress tensor
τ i,p of the ith fluid. Clearly the sign of this term is negative and, as a result, viscous
dissipation always stabilizes the flow.
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(c) The rate at which the Reynolds stress is transferring energy between the primary
and the disturbed flow (RSi) in the bulk of both fluids is defined as

RSi = −ρi
∫
Vi
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dV . (5.3)

(d) The rate at which work is done by the velocity and stress disturbances in the
direction normal (BN) and tangent (BT ) to the interface are defined as

BN =

∫ 2πN
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· t dz, (5.5)

where n and t are the unit vectors normal and tangent to the steady fluid/fluid
interface. It is worth noting that the boundary term normal to the interface arising
from the energy equation after applying the divergence theorem involves the disturbed
pressures of both fluids. Since we have eliminated the pressure terms from the
linearized equations of motion of both fluids while using the streamfunction–vorticity
formulation, we have to compute the pressure terms after having computed the
eigenvector by solving a second-order partial differential equation in both spatial
directions. Furthermore, the pressure terms arising in the energy term BN which has
been attributed to the normal stress condition, see (5.4), cannot be directly eliminated
using the interfacial force balances. As a result, BN appears to depend not only on
the surface tension parameter as in the case of the straight tube geometry but also on
the viscosity ratio and the Reynolds number. However, by setting the surface tension
equal to zero or the viscosity ratio equal to unity we have found that the terms BN
and BT become zero correspondingly for all values of Re, indicating a direct effect
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on W and µ on these energy terms. Hence, we prefer to compute the BN term taking
advantage of the fact that the sum of all the energy terms equals zero. The sign of the
last three energy terms can be positive or negative and, as a result, it is not possible
to determine a priori whether they stabilize or destabilize the system, since their effect
depends on the values of the dimensionless numbers. Each one of the above energy
terms has been normalized by the sum of the dissipative terms following the idea by
Hu & Joseph (1989). Therefore, in all the cases where values of the energy terms are
given, the sum of the dissipative terms of both fluids equals unity.

6. Numerical implementation
In order to solve both the steady and the eigenvalue problem in the streamfunction–

vorticity formulation we use a pseudo-spectral method. This method is preferred be-
cause of its exponential rate of convergence with mesh refinement (Gottlieb & Orszag
1977; Canuto et al. 1988). We approximate every dependent valuable by Chebyshev
polynomials in the x1-direction and Fourier modes in the x2-direction. The grid
points in the x1-direction are given by x1k = cos (π(k − 1)/(K − 1)), 1 6 k 6 K , while
the grid points in the x2-direction are taken to be equidistant x2m = (2π(m− 1)/M),
1 6 m 6M, where (M−1)/2 is the highest number of Fourier modes which has been
used. The division by 2 is due to the fact that every Fourier mode includes both a
sine and a cosine component while the −1 is due to the single (first) constant mode.
So, every dependent variable is approximated as a sum of products of Chebyshev
polynomials, Ci, and Fourier modes, Fj , i.e.

f(x1, x2) =

K∑
i=1

M∑
j=1

aij Ci(x1)Fj(x2). (6.1)

The derivative of each function with respect to every variable is evaluated by differ-
entiating term by term its spectral expansion and, thus, by forming the ‘derivative’
matrices. Finally the unknowns of the summation (6.1), aij , equal the number of col-
location points and they are evaluated by satisfying the differential equations at these
points. By using M and K unknowns in the axial and radial direction, respectively,
the total number of unknowns is 4MK + M for both the steady and the eigenvalue
problem.

In order to evaluate the various energy terms, the region that each fluid occupies is
divided into quadrilateral finite elements and then each variable is approximated by
linear Lagrangian basis functions in each direction. The Galerkin-weighted residuals
are formed and the resulting two-dimensional integrals are evaluated by using four
Gauss points and the one-dimensional ones by using two. Convergence of the values
of the energy terms with increasing the number of the elements is achieved in this
case too.

7. Comparison with literature results
The most sensitive among our calculations are those that involve computation of

the eigenvalues. Because of this, our results are compared carefully to literature results
next. By setting the constriction ratio to unity (α = 1) the straight tube geometry is
recovered. Although this is just a limiting case, there are many reported results that
can be used to check the accuracy of our calculations. First, the case of an unbounded
and infinitely long jet with high viscosity is examined using the following values of the
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ν xCh Exact (σChR ) This work (σR)

1 0.2 0.16000 0.15996
2 0.4 0.14000 0.13997
3 0.6 0.10660 0.10657
4 0.8 0.05984 0.05985
5 1.0 0.00000 0.00000

Table 1. Comparison of the growth rates from the present analysis with those reported by
Chandrasekhar (1981) for the instability of a high-viscosity and infinte jet.

dimensionless numbers: µ = 0.5× 10−5, ρ = 0, Re = 10−3, W = 1, Λ = 0.2π, R1 = π−1.
We assign a very small value to the Reynolds number (Re� 1) so that the jet is very
viscous. Furthermore, we set the viscosity ratio such that both µ� 1 and µ/Re� 1,
and the density ratio to zero. In this way the flow of the jet is decoupled from that of
the surrounding medium, since the latter exerts no force on the former through the
tangential force balance (µ� 1). Also, in the momentum balance of the annular fluid,
on one hand the inertia terms are multiplied by zero (ρ = 0) and, on the other hand,
the viscous terms are subdominant to the corresponding ones of the jet (µ/Re � 1).
Finally, a relatively small value of the inverse Weber number is used so that, among
the various terms appearing in the normal force balance, pressure forces and viscous
stresses (both arising from the jet) dominate. By using the following relation we
recover the eigenvalues of the most unstable mode, which indeed correspond to the
viscous jet instability reported by Chandrasekhar (1981):

xCh = νΛR1, σChR = σR Λ
2 R1

W

Re
. (7.1)

The superscript Ch indicates variables used by Chandrasekhar (1981) and ν is the
axial wavenumber. The excellent agreement between the two sets of results can be
seen in table 1, where only the growth rates are reported. Results from the same table
verify that in this case the growth rate decreases monotonically with increasing the
wavenumber and that the most dangerous wave is the longest one.

In order to recover the Rayleigh stability limit (Chandrasekhar 1981) of an inviscid
and unbounded jet we use the following values of the dimensionless numbers: µ =
0.5× 10−5, ρ = 0, Re = 102, W = 2× 102, Λ = 0.2π, R1 = π−1. We have chosen values
for the viscosity ratio and the Reynolds number such that µ � 1 and µ/Re � 1.
Furthermore, now we have used larger values for the Reynolds and the inverse Weber
numbers so that the force balance in the normal stress condition is predominantly
between pressure and capillary forces. The relation between the variables employed
here and those employed by Rayleigh is

xRa = νΛR1, σRaR = σR Λ

√
R3

1

W
. (7.2)

Using (7.2) we obtain the growth rates that are reported in table 2. Obviously the
agreement is again excellent, while it can be clearly seen that now the most dangerous
wave is not the longest one as the growth rate is maximized for about xRa = 0.6.
It is well known that the wavelength for which the growth rate of an inviscid jet
is maximized is xRa = 0.697, but due to the periodic boundary conditions that we
have imposed, we cannot capture this value unless the length of the computational
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ν xRa Exact (σRaR ) This work (σR)

1 0.2 0.1382 0.1382
2 0.4 0.2567 0.2566
3 0.6 0.3321 0.3319
4 0.8 0.3269 0.3266
5 1.0 0.0000 0.0002

Table 2. Comparison of the growth rates from the present analysis with those reported using the
inviscid analysis by Rayleigh.

Case Eigenvalues reported by This work
Hu & Joseph (1989) (streamfunction–vorticity)

1 0.020874± 0.38614·i 0.020978± 0.38485·i
2 0.004137± 0.66934·i 0.004147± 0.66939·i

Table 3. Comparison with the results reported by Hu & Joseph (1989) for CAF in a straight tube.

domain is an integer multiple of it. Another observation that we can make is that for
wavelength xRa = 0 the growth rate goes to zero as it should.

In the second column of table 3, we present eigenvalues of CAF in a straight tube
as computed by Hu & Joseph (1989) and reported in their table 1, for axisymmetric
modes. In the next column, we present the eigenvalues computed by using our code
based on the streamfunction–vorticity formultion. The values of the dimensionless
numbers (J∗, η, m, ζ, k, β, RHJ) that Hu & Joseph (1989) report for these two cases are
the following: Case 1: (1000, 0.9, 0.05, 1, 0, 5, 500), Case 2: (0, 0.7, 0.5, 1, 0, 10, 37.78).

Their dimensionless numbers are related to ours as follows:

µ = m, ρ = ζ,
V1

VT
= η2, Λ = β, A = 1− m(1− η2),

Re =
RHJβ

4A
(η4(1− m) + 2(1− η2)− (1 + 2Aη2)),

W = J∗
(

4A

RHJ
(
η4(1− m) + 2(1− η2)− (1− 2Aη2)

))2

.


(7.3)

From the comparison of our results with those obtained by Hu & Joseph (1989) we
conclude that there is complete agreement between the results already reported in the
literature and ours.

Moreover, we have examined the validity of the analytically computed eigenvalues
for CAF in a straight tube for small Renolds number (µi/Re� 1) and large surface
tension (W > O(1/Re)). These were derived in Kouris & Tsamopoulos (2000a) who
used lubrication theory and, as a result, their analysis is accurate only for very long
waves. According to them, the real and imaginary parts of the eigenvalues are

σR = −ν
2 ReW

(
1− ν2 Λ 2R2

1

)
R1

4µ

×
(

ln (R1) + (1− R2
1)

1 + (µ− 1)R2
1 − 0.25µ(1 + R2

1)

1 + (µ− 1)R4
1

)
,

σI = ±4ν(R2
1 − 1)

1 + (µ− 1)R2
1

(1 + (µ− 1)R4
1)2
.


(7.4)



Core–annular flow in a periodically constricted tube. Part 1 45

ν Lubrication approximation Complete equations
σR ± σII σR ± σI i

1 0.032038± 2.79709·I 0.031337± 2.81565·i
2 0.102522± 5.59417·I 0.093819± 5.65902·i
3 0.134560± 8.39126·I 0.110733± 8.59168·i
4 0.000000± 11.1883·I 0.000221± 11.6117·i
5 −0.480570± 13.9854·I −0.289801± 14.7075·i

Table 4. Comparison with the analytical (long-wave) solution for the following values of the
dimensionless numbers (µ, Re,W , R1, Λ) = (0.5, 0.01, 100, 0.5, 0.5).

Equation (7.4) is different from that obtained by Preziosi et al. (1989), since the
eigenvalues depend on the axial wavenumber, ν, as well. It is also different from the
characteristic equation reported by Papageorgiou et al. (1990) since it includes the
dependence on the thickness of the core fluid, R1. In table 4 we compare the computed
eigenvalues of the complete Navier–Stokes equations with the predicted ones using
equation (7.4). The difference between the analytical solution and the results obtained
numerically by solving the complete equations for the longest mode is about 2% for
the real part of the eigenvalue and much smaller for the imaginary part. This error
increases with increasing wavenumber and becomes approximately 9% for ν = 2
and 20% for ν = 3 for the respective real parts. This deviation of the results with
increasing the wavenumber is due to the fact that the lubrication approximation is
a long-wave expansion and as a result it can only accommodate waves very long
compared to the radius of the tube.

Finally, we have examined the accuracy of our energy calculations in the case of
CAF in a straight tube as can be seen in table 5. The energy results in this table
are compared to those by Hu & Joseph (1989) and are obtained by using values
for the dimensionless numbers that correspond to the conditions in the experiments
by Aul & Olbricht (1990). By using again the dimensionless numbers which Hu &
Joseph (1989) report in their paper (see their table 4) and using (7.3) to convert them
to ours, we obtain very similar results. Both sets of results in this table predict that
with increasing Re, the dominant mechanism of instability switches from one due to
capillarity (BN is the largest term) to one due to the viscosity stratification (BT is the
largest term), a type of instability which can be thought of as the viscous analogue of
Kelvin–Helmholtz instability. The Reynolds stresses in the bulk of both fluids remain
insignificant irrespective of the Reynolds number.

In order to check the accuracy of our numerical scheme in the case of a constricted
tube we reproduce results reported by Lahbabi & Chang (1986) for single-phase flow.
They have computed the friction factor for various Reynolds numbers, which range
from the creeping flow limit to cases for which a pronounced separation region exists
in the expanding portion of the tube. Their results correspond to the case of a tube
with constriction ratio and aspect ratio α = 0.538 and Λ = 1.307, respectively. In
order to reproduce their results both the viscosity and the density ratio are set to
unity (µ = ρ = 1) as well as W = 0. These values are chosen in order to suppress the
effects of viscosity and density stratification and surface tension. Excellent agreement
of our results with theirs has been achieved for all values of Reynolds number, even
when Re is as large as 264.

As encouraging as this comparison may be, it does not check the accuracy of
either imposing the interfacial conditions or determining the stability of the flow. To
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Case ReHJ RS1 + RS2 BN BT E1 + E2

Results reported by Hu & Joseph (1989)

1 0.005 0.21× 10−6 0.6605 0.3393 0.2117× 10−6

2 0.01 0.41× 10−6 0.3264 0.6733 0.4173× 10−6

3 0.0277 0.55× 10−6 0.05934 0.9402 0.5816× 10−6

4 0.05 0.49× 10−6 0.01899 0.9805 0.6065× 10−6

5 0.1 0.16× 10−6 0.4819× 10−2 0.9946 0.6155× 10−6

This work

1 0.005 0.21× 10−6 0.6573 0.3427 0.210× 10−6

2 0.01 0.41× 10−6 0.3285 0.6715 0.417× 10−6

3 0.0277 0.55× 10−6 0.05803 0.9419 0.581× 10−6

4 0.05 0.49× 10−6 0.01954 0.9804 0.606× 10−6

5 0.1 0.16× 10−6 0.4014× 10−2 0.9960 0.353× 10−4

Table 5. Comparison with the energy results reported by Hu & Joseph (1989) for the experiments
performed by Aul & Olbricht (1990) for CAF in a straight tube.
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Figure 2. Marginal stability curves predicted by solving the complete equations and those ob-
tained using lubrication theory. The dimensionless numbers for both curves are: ρ = 1, W = 4,
V1/VT = 0.75, α = 0.8, Λ = 0.2π, N = 1.

this end, next we compare our stability results with those obtained using a long-
wave expansion for the case of two-phase flow in a constricted tube (Kouris &
Tsamopoulos 2000). In figure 2 we give the critical curve that divides the plane of
viscosity ratio versus Reynolds number into stable and unstable regions denoted by
the letters S and U, respectively. The solid line is computed by solving the complete
equations of motion of both fluids while the dotted line has been computed by solving
the simplified lubrication equations. The values of the dimensionless numbers used
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Fourier modes Chebyshev modes Total unknowns Leading eigenvalue

(a) 31 9 1147 0.18147653× 10−5 ± 0.97087095·i
35 11 1575 0.13636867× 10−5 ± 0.97086901·i
39 13 2067 0.29235725× 10−5 ± 0.97087758·i
43 15 2623 0.82232429× 10−5 ± 0.97086104·i

(b) 61 9 2257 0.18556984× 10−3 ± 0.23834038·i
65 11 2925 0.41300999× 10−3 ± 0.23649878·i
69 13 3657 0.77424919× 10−4 ± 0.23677251·i

Table 6. Convergence of the leading eigenvalue at (a) small Reynolds number
and small viscosity ratio in the following values of the dimensionless numbers:
(µ, ρ, Re,W , V1/VT , Λ, α, N) = (0.005, 1, 0.8646, 66.8867, 0.859, 0.25π, 0.8, 1) and (b) large Reynolds
number and moderate viscosity ratio with the following values of the dimensionless numbers
(µ, ρ, Re,W , V1/VT , Λ, α, N) = (0.5165, 1, 87.5, 5, 0.859, 0.25π, 0.8, 5).

are the following: ρ = 1, W = 4, α = 0.8, V1/VT = 0.75, Λ = 0.2π, N = 1. The
agreement is satisfactory, as expected, since the small parameter of the lubrication
approximation is taken to be less than unity Λ/(2π) = 0.1� 1. It is noteworthy that
in both formulations the most unstable mode is a long-wavelength one, because the
computations were performed with a constant value of W = O(1), thus validating the
lubrication analysis.

Finally, in tables 6(a) and 6(b) one can see the convergence of the leading (most
unstable) eigenvalue on increasing the total number of unknowns. These results
correspond to two representative cases: the first to small Reynolds number and very
small viscosity ratio; the second to large Reynolds number and moderate viscosity
ratio. In both cases the effective Reynolds number of the outer fluid is large, leading
to the formation of a vortex attached to the tube wall.

In spite of this, one can see that the imaginary part of the leading eigenmode
converges to at least three significant digits while the total number of unknowns
needed in order to get converged results increases with increasing the Reynolds
number. Since the parameters are chosen so that we are very close to neutral stability,
the real part of the eigenvalues is at least four orders of magnitude smaller than the
imaginary part and, thus, it has already converged.

8. Steady-state results
For clearer presentation of the results the dimensionless length of each cell will be

set to 1. Therefore, the axial distance henceforth will be denoted ‘y’ and it will vary
between 0 and 1 for one cell, between 0 and 2 for two cells and so on, instead of
between 0 and 2π in all these cases. Figure 3 shows the effect of the Reynolds number
and the viscosity ratio (their respective values are given on the figure) on the steady-
state shapes of the fluid/fluid interface in CAF in a constricted tube. The values of
the rest of the dimensionless numbers remain constant. Clearly the interface follows
the imposed symmetry between the entrance and the exit of the cell. In spite of the
very small value of the viscosity ratio, µ = 0.005, when Re < 1 the interface exhibits
the symmetry at y = 1/2 expected for creeping flow conditions and closely follows
the shape of the tube. Increasing fluid inertia to Re = 1, first shifts the interface to the
direction of the flow both before and after the y = 1/2 plane, breaking the mid-plane
symmetry. At even higher values of Re, e.g. Re = 5, the interface is forced abruptly
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Figure 3. Effect of the Reynolds number and the viscosity ratio on the steady fluid/fluid interface,
ρ = 1, W = 10, V1/VT = 0.797, α = 0.8, Λ = 0.25π, N = 1. The thickest line indicates the location
of the tube wall.

away from the tube wall before and around the y = 1/2 plane and it is uniformly
pushed closer to the wall beyond the y = 1/2 plane. For mass conservation reasons,
even near the entrance the interface approaches the tube wall. Thus, enough space
is given to the outer fluid to separate and recirculate where the tube cross-section
expands. Overall the interface becomes quite wavy and has a local minimum at
axial distance close to the maximum of the radius of the tube wall and two local
maxima around it. This distortion of the interafce increases when Re increases or
the constriction ratio decreases from unity. The asymmetry of the interface and of
the flow around y = 1/2 is gradually removed by increasing the viscosity ratio and
disappears for µ = 0.5. Comparing the two symmetric cases, the one with the larger
viscosity ratio follows the variations of the tube wall more closely than the one with
the smaller µ. In most cases with a more viscous fluid in the core, the annular film
thickness is maximized (minimized) where the tube radius is maximized (minimized);
the core fluid avoids entering the wall cavity.

Figure 4 shows the effect of the inverse Weber number, W , for values given on
the figure. The values of Re = 1,W = 10 and µ = 0.005 have been chosen so that a
smooth interface is predicted according to the previous discussion. These parameter
values generate an interface that is already not symmetric around the y = 1/2 plane,
but it closely follows the shape of the tube. Increasing W increases the capillary force
exerted on the curved interface from the annular to the core fluid owing to surface
tension and, as a result, the interface follows the shape variation of the solid wall
even less. At the highest value of W we examined, W = 40, the distortion of the
interface increases further and it becomes wavy, allowing fluid recirculation to occur
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Figure 4. Effect of the inverse Weber number, W , on the steady fluid/fluid interface, µ = 0.005,
ρ = 1, Re = 1, V1/VT = 0.797, α = 0.8, Λ = 0.25π, N = 1. The thickest indicates the location of the
tube wall.

in the expanding portion of the tube in the region occupied by the annular fluid.
Flow separation will arise there too; however, this distortion is not as large as the
one caused by increasing Re.

Figure 5 shows the steady shape of the interface for different values of the viscosity
and core volume ratios. Starting from the values µ = 0.005, V1/VT = 0.736 it is
observed that the interface exhibits the usual local minimum given the values of the
rest of the parameters. Increasing the volume of the inner fluid decreases the space
available to the outer one for its recirculation which, however, is not eliminated. On
the contrary, its presence in a smaller volume makes the local extrema in the interface
even more pronounced. Recirculation is eliminated and the interface again follows
the surface of the tube on increasing the viscosity ratio.

The effect of the various parameters can also be seen in figure 6, where the
steady streamlines in both fluids are depicted. The lower streamline gives the axis
of symmetry, the upper one gives the tube wall and the thicker one with the arrows
simultaneously gives the location of the common interface and the direction of the
flow of the two liquids. The axis of the pipe, r = 0, as well as the solid surface of
the tube, r = R2(z), correspond to streamlines of different constant values, −1 and
0, respectively, as in both surfaces the radial velocity of the fluids is identically zero.
When Re� 1, the streamlines are symmetric around the mid-plane (figure 6a) as
they should be in the creeping flow limit, in spite of the small values of µ which
increases the effective Re of the annular fluid considerably. On physical grounds, the
increase of fluid inertia is expected to produce separated flow regions. This does not



50 C. Kouris and J. Tsamopoulos

1.00

0.95

0.90

0.85

0.80

0.75

0.70

R
ad

ia
l d

is
ta

nc
e

0 0.2 0.4 0.6 0.8 1.0

Axial distance

V1/VT=0.736, µ=0.005

V1/VT=0.797, µ=0.005

V1/VT=0.859, µ=0.005

V1/VT=0.859, µ=0.5

Figure 5. Effect of the ratio of volume occupied by the core fluid to the total volume of the
tube and the viscosity ratio on the steady fluid/fluid interface, ρ = 1, Re = 5, W = 10, α = 0.8,
Λ = 0.25π, N = 1. The thickest line indicates the location of the tube wall.

occur at Re = 1, given the values of the rest of the parameters, but it does occur at
Re = 5. This is shown in figure 6(b), where a large vortex appears inside the expanding
portion of the tube and it is located entirely in the region occupied by the annular
fluid. This vortex is not symmetric around the mid-plane and it arises first before the
mid-plane as in this region the flow cross-section expands making the flow susceptible
to separation. On increasing Re further, the vortex expands and moves toward the
mid-plane. The onset of separation is dependent not only on the inertial forces, but
also on the geometry (curvature) of the tube. The straight tube, for example, does
not exhibit stationary flow separation irrespective of the value of Re. Decreasing the
volume occupied by the inner fluid to V1/VT = 0.736 enlarges the recirculation region
and the core fluid seems to bypass entirely the indentation of the tube, figure 6(c).
Finally, increasing W to 20 does induce recirculation at parameter values for which it
did not exist with W = 10, figure 6(d). This effect is accentuated further when W = 40.

9. Axisymmetric stability and energy analysis results
The neutral stability curves in this section are constructed by keeping constant

all dimensionless numbers except one, while this remaining one, usually Re or µ,
is varied until the system turns from stable to unstable or vice versa, i.e. the real
part of the most ‘dangerous’ eigenvalue passes through zero. In the majority of the
cases examined the most unstable eigenvalue is a complex one pointing to a Hopf
bifurcation from the steady solutions, with the only exception when the viscosity ratio
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Figure 6. Streamlines corresponding to the steady flow with µ = 0.005, ρ = 1, α = 0.8, Λ = 0.25π,
N = 1 and (a) (Re,W , V1/VT ) = (0.2, 10, 0.797); (b) (5, 10, 0.797); (c) (5, 10, 0.736); and (d)
(1, 20, 0.797).

becomes O(10−3) and then the eigenvalues remain real. The change in the stability
of the system is identified through extensive and very time-consuming eigenvalue
calculations. The critical points are computed with a tolerance criterion as small as
0.5× 10−3 for the most unstable eigenvalue. The use of the Arnoldi algorithm to
expedite these computations is indeed essential.

The computation of only the critical value of the varying parameter is not adequate
to determine the dominant mechanism that drives the instability and, for that reason,
the latter is achieved in conjunction with the energy results reported in table 7. This
is necessary, as there are many causes of instability such as viscosity stratification,
capillarity and Reynolds stress, while in some cases the dominant mechanism may be
a combination of the above. In straight tubes an estimation of the type of instability
in CAF, whether it is an interfacial or a shear one, can be inferred by comparing the
wavelength of the unstable mode with the radius of the core fluid. The instability
driven by surface tension is characterized by long unstable waves, while the shear-
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Figure 7. Effect of the volume ratio on the marginal stability curves as a function of the viscosity
ratio and Reynolds number, ρ = 1, W = 5, α = 0.8, Λ = 0.25π, N = 5. The numbers on the neutral
curves indicate the points at which contributions to the linear energy have been calculated.

mode instability is connected with large Reynolds number in the less viscous fluid and
unstable modes with short wavelength, Hu & Joseph (1989). In contrast, the existence
here of a specific period of the geometry may alter this general picture. So we have
to rely on the energy analysis, which identifies the source of instability by examining
the relative magnitude of terms related to stresses acting tangent and normal to the
interface and terms related to fluid inertia in its bulk.

First, neutral stability curves for constant W are presented in log (µ) versus Re plots.
In all cases these curves have an acute-angled shape within which the flow is stable.
Their vertex is at higher Re and in the upper part µ varies a little between values
close to, but smaller than, 1 and in the lower part both µ and Re vary considerably.
It is noteworthy that, although there is an upper limit to the Reynolds number above
which CAF turns from stable to unstable, no lower limit to Re exists for a wide range
of viscosity ratios. In other words, as static conditions are approached, the expected
capillary instability does not seem to arise, irrespective of the disturbance wavelength.
This is explained by considering the fact that the growth rates for capillary instability
are scaled with T/(Rµ) (Chandrasekhar 1981, p. 540) which is proportional to Re2W
and which approaches zero much faster than Re does, when W = constant. Therefore
as Re→ 0, the growth rates also approach zero without changing sign, i.e. the flow
remains stable.

Figure 7 shows the stability boundaries of CAF for the following values of the
dimensionless numbers: ρ = 1, W = 5, α = 0.8, Λ = 0.25π, N = 5 and shows the
effect of the ratio of the volume of the core fluid to the total volume of the tube.
These dimensionless numbers correspond to a sequence of five constrictions whose
maximum radius is 0.125 times the length of each and its minimum radius is 0.8 times
its maximum one. It is clear that by increasing the volume occupied by the core fluid
the stable region expands and, as a result, the flow becomes unstable at much larger
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Case µ ρ Re W N V1/VT RS1 + RS2 BN BT E × 105

1 0.7653 1 10 5 5 0.798 0.003 0.0143 0.9826 −0.343
2 0.41 1 32.5 5 5 0.798 0.0713 0.0951 0.8335 −0.2113
3 0.114 1 10 5 5 0.798 0.0695 0.0172 0.9133 −0.9468
4 0.8887 1 10 5 5 0.859 −0.0183 0.0671 0.9512 0.0225
5 0.5165 1 87.5 5 5 0.859 0.0832 0.0356 0.8811 −0.1884
6 0.0125 1 1 5 5 0.859 0.0115 0.0027 0.9857 −0.5011
7 0.8 1 1 10 5 0.859 −0.0004 0.0121 0.9883 0.0087
8 0.35 1 53 10 5 0.859 0.0759 0.0643 0.8598 −1.1
9 0.055 1 1 10 5 0.859 0.0008 0.0001 0.9986 −0.041

10 0.7 3 1 5 5 0.795 0.0003 0.0055 0.9942 −0.0765
11 0.5217 3 120 5 5 0.798 0.4863 0.1772 0.3365 9.15
12 0.01 3 3.782 5 5 0.798 0.3619 0.6489 −0.0118 −102.5
13 0.609 0.33 20 5 5 0.798 0.015 0.0126 0.9724 −0.054
14 0.17 0.33 1 5 5 0.798 0.0002 0.0005 0.9993 −0.0026
15 0.999 1 18 0.1543 2 0.859 −0.0029 0.9887 0.0143 0.5566
16 0.975 1 139.26 0.0026 2 0.859 0.0373 −0.313 1.2757 −0.0213
17 0.5 1 1.397 25.62 2 0.859 −0.0004 0.0016 0.9988 0.0115
18 0.07 1 1.881 14.1316 2 0.859 0.0021 0.0113 0.9968 0.1331
19 0.01 1 3.397 4.3329 2 0.859 0.2128 0.0407 0.7464 −0.8295
20 0.02 1 10.195 0.481 2 0.859 0.3343 0.0273 0.6384 0.0799

Table 7. Energy analysis results. Numbers in bold indicate the dominant term(s) in the
energy balance.

values of the Reynolds number. Indeed, just a small increase in the volume ratio from
0.798 to 0.859 causes a significant increase in the maximum allowed Re, from about 32
to 95, while the value of the viscosity ratio which maximizes this critical value of Re
remains approximately the same, µ ∼ 0.45. On the other hand, decreasing the volume
ratio shrinks the stable domain and eventually leads to its disappearance. Similarly,
Hu & Joseph (1989) have found that decreasing the thickness of the lubricating fluid
in the annulus stabilizes CAF in a straight tube. It can also be seen that the steady
flow remains stable within a range of values of µ. The viscosity ratio along the upper
side of each angle is always below unity and its maximum values increase slightly
(from 0.7 to 0.8) with increasing V1/VT , which means that the computed steady flow
is physically realizable only when the more viscous fluid is centrally located. On the
other hand, the viscosity ratio along the lower side of each angle decreases by about
an order of magnitude and from 0.1 to 0.02 at small values of the Reynolds number
by only changing V1/VT from 0.798 to 0.859.

Cases 1–3 in table 7 correspond to points on the dotted line in figure 7 with core
volume ratio 0.798, while cases 4–6 correspond to points on the solid line with core
volume ratio 0.859. These are three representative cases from each curve, having been
chosen from their top, right and bottom segment, respectively, see figure 7. In spite
of this, the various energy terms reveal that the dominant mechanism of instability is
always due to the stresses that act in the direction tangent to the interface, since all
the other energy terms are at least one order of magnitude smaller. Therefore, in all
these cases instability is driven by viscosity stratification. The reason for this is that,
although the basic state satisfies the interfacial balance on the undisturbed surface,
it does not on the disturbed interface because of the jump in the shear stress there.
Of course, this may not remain the dominant mechanism if one moves well into the
unstable domain as Hu & Joseph (1989) did. It is worth noting that in none of the
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Figure 8. The shape of the disturbed interface corresponding to the critical point shown in table 7
as case 4, (a), and case 6, (b).

cases examined was a stable CAF with µ > 1 found, irrespective of the values of the
other dimensionless numbers, a result which is in agreement for the case of CAF in
a straight tube reported by Preziosi et al. (1989).

Representative eigenforms of the fluid/fluid interface as well as of the stream-
function are given next. The two different curves in each of figures 8(a) and 8(b)
correspond to the real (solid line) and imaginary (dotted line) parts of the eigenfunc-
tion of the interface, for cases 4 and 6 of figure 7, respectively. Rather small Re, but
quite different values of µ (< 1) characterize these cases. It is observed that only one
wavelength of the disturbance fits within the length of the tube, which in this case is 40
times its maximum radius. Clearly, these shapes resemble each other, but they deviate
considerably from the eigenfunctions arising in a straight tube, which are simple sinu-
soidal waves of various wavelengths. In fact, on top of this single and dominant wave
one may observe shorter ones with smaller amplitude. Figure 9(a) gives the part of
the eigenfunction that corresponds to the fluid/fluid interface for case (a) in figure 7,
where Re = 80, µ = 0.5717, ρ = 1, W = 5, α = 0.8, Λ = 0.25π, N = 5, V1/VT = 0.859.
At this point the corresponding less stable eigenvalue is −0.3174 × 10−5 ± 0.2381·i.
Large Re and intermediate values of µ characterize this case. Here 2.5 wavelengths
of the disturbance fit within the length of the tube and additional shorter waves arise
on top of it too. Therefore, although Re is now larger than in figure 8, the most
unstable disturbance is still characterized by a fairly long wavelength. Figures 9(b)
and 9(c) give the part of the eigensolution corresponding to the instantaneous stream-
lines and verify its smoothness. The disturbance streamlines seem to form one large
recirculating region, which includes two smaller ones in each undulation of the tube.

Figure 10 shows the effect of the inverse Weber number on the stability of the
associated steady solution. The dimensionless numbers used are the following: ρ = 1,
V1/VT = 0.859, α = 0.8, Λ = 0.25π, N = 5. The two curves correspond to W = 5
and 10, respectively. It can be seen clearly that on increasing the capillary force
on the fluid/fluid interface relative to fluid inertia in the core, the stable region of
CAF is shrinking. Contributions to the disturbance energy are calculated for three
representative points here as well. The results, given in table 7 (cases 7–9), reveal that
the dominant mechanism of instability is due to tangential stresses on the interface (as
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Figure 9. (a) Disturbed shape of the interface for the case for large Re andW shown in table 7 as case
5. The corresponding critical point is indicated in figure 7 by (a). Parameter values are: µ = 0.5717,
ρ = 1, Re = 80, W = 5, V1/VT = 0.859, α = 0.8, Λ = 0.25π, N = 5, and the corresponding
eigenvalue σ = −0.3174× 10−5 ± 0.2381·i. (b),(c) Real and imaginary parts, respectively, of the
associated disturbed streamlines.

in cases 1–6) caused by the viscosity difference between the two fluids. Additionally,
the eigenshapes are again characterized by long waves. Because surface tension
generally contributes to the destabilization of long waves, it is understandable that
increasing W promotes the instability. This effect of W on the neutral stability curves
is not different from that caused by the variation of V1/VT , because increasing V1/VT
or effectively the average R1, and decreasing W or effectively the surface tension,
decreases the capillary force on the interface. Nevertheless, one may still wonder
why changing W relocates the neutral curves, although energy analysis indicates
that instability is induced by viscosity difference. We believe that this is because on
increasing W the interface in the base state becomes more deformed, and susceptible
to shear instability. This effect is not present in CAF in a straight tube, where the
base state is straight also and remains unaffected by variations in W or Re.

As mentioned already, in the present case normal mode decomposition in the axial
direction is not possible, because the periodic constrictions force the primary flow
to depend on the axial direction. Although this does not seem to impose a major
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Figure 10. Effect of the inverse Weber number on the marginal stability curves as a function of
the viscosity ratio and Reynolds number, ρ = 1, α = 0.8, V1/VT = 0.859, Λ = 0.25π, N = 5. The
numbers on the neutral curves indicate the points at which contributions to the linear energy have
been calculated.

numerical problem, it does make the stability analysis rather more difficult and time-
consuming, since all modes must be computed simultaneously and their dependence
in the radial and axial direction cannot be separated. In contrast, in a straight tube
one needs to solve only for the eigenvectors in the radial direction irrespective of
the axial length considered. In all the simulations that we have performed we have
tried to minimize as much as possible the effect of the finite axial length and the
related periodic boundary conditions. For this reason we have used in most cases
five undulations in the tube with aspect ratio L/Rmax = 8 which results in a total
computational length 40 times the maximum radius of the tube. In order to verify
that this is indeed necessary, the effect of the number of undulations considered on
the stability of CAF is examined for N = 1, 2 and 5. In all three cases it is verified
first that the independently calculated base solution is periodic with period L, not
NL. However, figure 11 shows that N has a profound effect on the stability limits
of the flow. The instability predicted by the curves in this figure is again due to the
viscosity contrast of the two fluids. As in figures 7 and 10, it is a long-wave instability
and, although the stable region of CAF shrinks considerably on increasing N from
1 to 5, the dominant mechanism of instability does not change at all. Comparing
the curves in figure 11 it is concluded that using just one undulation gives erroneous
results for flow stability, whereas using five is more than adequate, since results for
two and five undulations are very close to each other. Close observation of figure 11
reveals that stability is predicted even wmth µ = 1.008 > 1, when N = 1, which is
clearly wrong. Similarly, we have found that stable flow for even larger values of µ
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Figure 11. Effect of the number of undulations on the marginal stability curves as a function of
the viscosity ratio and Reynolds number, ρ = 1, W = 5, α = 0.8, V1/VT = 0.859, Λ = 0.25π.

(e.g. µ = 5) may be predicted, if the aspect ratio, Λ, is not taken to be small enough
with N = 1. It seems that keeping only one undulation does not provide enough
space for the instability to develop. Therefore, the effect on stability of imposing
periodic boundary conditions in a finite domain is reduced considerably when using
at least N = 2. Although in figure 11 we increase the number of cells above two and,
therefore, we permit modes with greater wavelength, these are stable. Clearly, the
stable domain does not vanish as N increases. It is worth noting that five undulations
is the maximum number that we can handle as dictated by the computer memory and
CPU time requirements. Of course this result does not mean that the critical modes
computed using N = 2 and N = 5 are the same and for that reason the corresponding
critical values of µ and Re are slightly different. What is happening is that although
the critical mode changes with increasing the length of the domain, the difference of
the critical value of the parameter at which the bifurcation takes place changes less
and less, indicative of its convergence with respect to the length of the domain.

In general, on comparing stability results for straight and undulating tubes it is
found that the latter imposes stricter limits on the parameter values and therefore as
the constriction ratio approaches unity the above stable domains expand. Preziosi et
al. (1989), following the methodology introduced by Yih (1967), have examined the
stability of CAF in a straight tube witih respect to long waves. They have found that
the Reynolds number should be large enough in order to overcome the destabilizing
effect of surface tension. More specifically, they have predicted that for a case with
µ = 0.5, ρ = 1, V1/VT = 0.859, upon transforming results from their figure 3 to our
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Figure 12. Effect of the density ratio on the marginal stability curves as a function of the viscosity
ratio and Reynolds number, W = 5, α = 0.8, V1/VT = 0.797, Λ = 0.25π, N = 5. The numbers
on the neutral curves indicate the points at which contributions to the linear energy have been
calculated.

variables, requires W < 12 to be stable, i.e. a larger upper limit than in a constricted
tube.

In figure 12 we present the effect of the density ratio on the stability of CAF in an
undulating tube. It is observed that for all values of the viscosity ratio the use of a
lighter fluid in the core expands the stable region of CAF in a periodically constricted
tube to larger values of the Reynolds number. Cases 13 and 14 of table 7 reveal that,
when the annular fluid is the lighter one, instability is generated by the tangential
stresses on the interface, while cases 10–12 show that, when the annular fluid is the
heavier one, this mechanism holds only for viscosity ratio above 0.7. In contrast, when
the viscosity ratio is below 0.5 a change in the mechanism of instability occurs and
it is now driven by either capillarity or by the Reynolds stress or a combination of
both. This change in the mechanism of instability is why the third curve, with ρ = 3,
deviates so much from the other two, which have density ratio ρ = 0.33 and 1. For
example, the maximum Re is restricted to values below 20 for ρ = 0.33, below 30
for ρ = 1 and is somewhat above 120 for ρ = 3. Therefore, when surface tension
is comparable to inertial forces, W ∼ 5, the use of a lighter fluid in the core can
suppress the more unstable long waves which are excited by the stresses tangent to
the interface for ρ = 1, whereas now all possible mechanisms combine to generate
instability. This stabilization is greater for intermediate values of the viscosity ratio,
µ ∼ 0.5. Smith (1989) examined the effect of the density difference on the long-wave
instability of CAF in a straight tube. He considered fluids of equal viscosities, so as
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to suppress Yih’s type of instability, and allowed fluids of different densities. He took
into account the effect of gravity in order to produce a jump in the curvature of the
steady velocity profile and showed that, indeed, the density contrast of the two fluids
can suppress or excite unstable modes of long wavelength. In our case, the jump in
the shear stress is not caused by gravity and density difference, but by the viscosity
difference of the two fluids. The density difference affects the stability of CAF in a
constricted tube in the same way as in a straight tube, as it multiplies the inertial terms
of the outer fluid, in this way modifying its pressure. The pressure of the outer fluid is
involved in the normal force balance and, for this reason, the increase of the density
ratio brings into play the energy term related to the interfacial forces acting in the
direction normal to the interface and the term related to the fluid inertia, see table 7.

We define the parameter

J =
TRmax ρ̂1

µ̂2
1

Λ2 = W Re2,

which is the inverse Ohnesorge number. The advantage of using this parameter for
setting the interfacial tension is that it is independent of the velocity of the basic flow
and it is determined only by the tube geometry and the properties of the two fluids;
thus it characterizes the fluids. So, we have constructed the figures that follow using
J instead of W . In these we re-examine the effect of the volume ratio, the density
ratio and the effect of J itself on the stability of CAF in an undulating tube and
observe a common characteristic that distinguishes them from all the earlier stability
diagrams. Plainly, in all of them we identify neutral stability boundaries at small
as well as large Reynolds numbers. The stable domains now resemble a triangle in
log (µ) versus log (Re) plots, with a top side (where the viscosity ratio tends to unity),
a lower left, almost vertical side (where Re remains small) and a lower right side.
Along each neutral curve with a constant value of J the fluid pair remains the same
and increasing Re by one or two orders of magnitude requires a decrease in W by
two or four orders of magnitude, respectively, whereas moving along the previous
neutral curves with constant W requires changing the fluid pair appropriately.

Moreover, figure 13 shows that by increasing the volume of the high-viscosity,
inner fluid the stable region of CAF generally expands. This expansion is quite clear
in the lower two sides of the neutral curve including both low and high Reynolds
numbers, but not in most of its upper side. This is not the case in the upper part of
the neutral curves when W is kept constant (figure 7), which is significantly affected
and has been associated with instability due to viscosity stratification. Therefore, the
instability generating most of the upper part of the curves in figure 13 should not be
associated with the viscosity difference. Besides, in this segment, 1−µ is so close to zero
that it would eliminate the related energy term. Regarding the remaining instability
mechanisms – the action of the normal stresses or the inertia of both fluids – the second
is associated with the outer fluid, which is the less viscous one, see Hu & Joseph
(1989). However, if this is the instability mechanism, then the increase of the volume
of the inner fluid should modify them significantly, because increasing the volume of
the inner fluid decreases the mass of the outer one and, thus, its ability to destabilize
the flow through the Reynolds stresses. Since this is not observed, this mechanism
should be excluded also and the instability should be attributed to capillarity. Indeed
this conclusion is in accordance with the energy calculations reported in table 7 (case
15). On examining the energy terms in the remaining segments of the neutral curves
in figure 13, it is found that the dominant mode of instability at the limit of small
viscosity ratio, cases 19 and 20, is a combination of the action of the Reynolds stress
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Figure 13. Effect of the volume ratio occupied by the core fluid on the marginal stability curves
as a function of the viscosity ratio and Reynolds number keeping constant the Ohnesorge number,
ρ = 1, J = 50, α = 0.8, Λ = 0.25π, N = 2. The numbers on the neutral curves indicate the points at
which contributions to the linear energy have been calculated.

and the stresses acting tangent to the interface. This result should be expected, as
when the viscosity of the outer fluid becomes so much smaller than that of the inner
fluid, the effective Re of the outer fluid increases. Finally, the neutral stability curves
at lower and higher Reynolds numbers and intermediate values of viscosity ratio are
associated with viscosity stratification (see table 7, cases 16–18). Still, one may wonder
why at least in the left lower segment where Re is small (which necessitates large W
values for a constant and large J) we do not observe capillary instability. Again we
believe that capillarity is involved, but in a more subtle way: the ‘large’ W values do
perturb the base interface shape, but do not cause the instability which is driven by
the higher shear exerted on the more wavy interface.

Representative eigenforms of the fluid/fluid interface for the above cases 17, 19
and 20 are given in figure 14. (The solid and the dotted line in each figure correspond
to the real and the imaginary part, respectively.) The first two cases cover the lower
left segment of the neutral stability boundary and have quite different values of µ and
Re. They exhibit a single wavelength in an axial distance that is 16 times longer than
the maximum radius of the tube. The decrease in µ while moving from case 17 to
case 19 decreases the smoothness of the interface and gives rise to additional shorter
and smaller waves. The disturbance interfaces for cases 15 and 18 closely follow those
of case 17. On the other hand, case 20 belongs to the lower right segment with a
very small value of µ, but an intermediate value of Re. Now the interface is even less
smooth and two wavelengths appear in the same axial distance. Similarly, case 16 with
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Figure 14. The shape of the distrubed interface corresponding to the critical points shown in
table 7 as case 17, (a), case 19, (b), and case 20, (c).

quite large Re, but µ very close to unity has three wavelengths. Thus, all these cases
could be characterized as disturbances with intermediate wavelengths, which are not
simple sinusoidal waves. Figures 15 and 16 correspond to cases ‘b’ and ‘c’ in figure 13
with the following values of the dimensionless numbers: Re = 93.89, µ = 0.5, ρ = 1,
W = 0.5672×10−2, α = 0.8, Λ = 0.25π, N = 2, V1/VT = 0.859 and with the following
eigenvalues: −0.4750× 10−4± 0.1926× 101, 0.3729× 10−4± 0.2256× 101, respectively.
In these neighbouring cases at large Re, but very small W , the disturbance interfaces
have either six or seven wavelengths in the same axial distance, i.e. they are somewhat
shorter than all previous cases. Clearly when surface tension is significant relative
to inertia then, irrespective of Re, the shape of the interface is quite smooth and
rapid changes are suppressed. The opposite holds when surface tension is very small
relative to inertia, where short-wavelength, unstable modes appear. Figures 15(b) and
16(b) give the part of the eigensolution corresponding to the streamlines and verify its
smoothness. The disturbance streamlines now seem to form two larger recirculating
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Figure 15. (a) Computed disturbed shape of the interface for the case of large Reynolds number
and small surface tension. The corresponding critical point is indicated in figure 13 by (b). The
parameter values are: µ = 0.5, ρ = 1, Re = 93.89, W = 0.005672, V1/VT = 0.859, α = 0.8, Λ = 0.25π,
N = 2, and the eigenvalue is σ = −0.4750× 10−4 ± 0.1926× 101 ·i. (b),(c) Real and imaginary parts,
respectively, of the associated disturbed streamlines.
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Figure 16. (a) Computed disturbed shape of the interface for the same values of the dimensionless
numbers as in figure 15, but with computed eigenvalue σ = 0.3729 × 10−4 ± 0.2256 × 101 · i. The
corresponding critical point is indicated in figure 13 by (c). (b),(c) Real and imaginary parts,
respectively, of the associated disturbed streamlines.
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Figure 17. Effect of the inverse Ohnesorge number on the marginal stability curves as a function
of the viscosity ratio and Reynolds number, ρ = 1, V1/VT = 0.920, α = 0.8, Λ = 0.25π, N = 2.

regions side by side, which contain three or more smaller ones in each undulation of
the tube.

In figure 17 we examine the effect of the inverse Ohnesorge number. In general,
increasing J decreases the stable domain, but less severely than increasing W (compare
with figure 10). The lower-left branch of the neutral stability curves, on which
instability is generated by the viscosity difference, seems to be affected most by this
increase. This is explained by noticing that increasing J at these small and constant
Re values increases W proportionately, and keeps it large, which deforms the base
state, making it more susceptible to shear instability. Similar qualitatively, but smaller
quantitatively, is the effect of increasing J on the lower-right side of the stability
boundary, because now Re is larger and W assumes quite smaller values. At the
largest Re where W is very small, and in a small range of intermediate µ values, the
effect of J is reversed; increasing it expands the stable domain. Finally, increasing
J from 50 to 100 leaves unaffected most of the upper boundary and it takes a
further increase in J by a factor of 8 to reduce by just half its portion that remains
unaffected. This could be puzzling because it has been shown that instability in this
part of the boundary is due to capillarity. Its explanation relies on the fact that when,
for example, Re = 20, increasing J from 100 to 800, increases W from 0.25 to only
2.0, i.e. the inverse Weber number varies between smaller values.

In figure 18 we present the effect of the density ratio. In general increasing ρ
expands the stable domain and each successive domain seems to fully enclose the
previous one. Now both the left and right lower boundaries expand at about the same
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Figure 18. Effect of the density ratio on the marginal stability curves as a function of the viscosity
ratio and Reynolds number keeping constant the Ohnesorge number, V1/VT = 0.920, J = 50,
α = 0.8, Λ = 0.25π, N = 2.

rate. At the largest ρ value that we examined, convergence of the base solution at
very small values of µ ∼ 10−3 was not achieved. This implies that a steady state may
not exist. It is only here as well as in figures 13 and 17, that the critical eigenvalues at
the very small values of µ (µ ∼ 2×10−3) are real and not complex. Calculations using
our spectral code for these very small values of the viscosity ratio, which promotes the
formation of a strong vortex in the annular fluid, are still accurate, but considerably
more difficult to converge.

10. Closing remarks
Core–annular flow of two immiscible fluids in a periodically constricted tube

has been studied. The governing equations are written in the vorticity–streamfunction
formulation for studying two-dimensional flow and its stability. Both the variable tube
radius and, even more so, the unknown location of the fluid/fluid interface necessitate
the use of a non-orthogonal coordinate transformation into a fixed and simple
domain. Its boundaries are chosen so that they facilitate the use of a pseudo-spectral
representation of all the dependent variables, which is preferred for its exponential
convergence. Newton–Raphson iterations are employed for the calculation of steady
solutions and the Arnoldi algorithm for the calculation of the most dangerous
eigenvalues. The steady-state results and the eigenvalues have been checked for
convergence by increasing the number of collocation points, and against results
reported in the literature for limiting values of the parameters.
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At low values of Re, the streamlines follow the tube boundary and exhibit the
expected symmetry at creeping flow conditions. Increasing Re or W or decreasing
the constriction or the viscosity ratio breaks this symmetry and eventually induces
recirculation in the part of the tube with the increasing cross-section. Varying the
volume of the inner fluid with respect to the volume of the tube also affects the size
and the intensity of the recirculation.

Stability has been examined by generating neutral curves in µ versus Re plots.
The mechanism creating it has been explored by calculating the various contribution
to the energy budget. It has been found that when W is kept constant the neutral
curves have an acute angled shape with their vertex in the large-Re area, an upper
side almost parallel to and always below the µ = 1 line and a lower side along
which both µ and Re vary considerably. At these boundaries a Hopf bifurcation from
the steady base state takes place. A stability boundary at low Re does not arise in
this case, because the eigenvalues, without changing sign, approach zero from within
the stable domain at the same rate that Re does. It has been shown that sufficient
length of the tube must be used in the stability calculations, in order that they are
unaffected by the boundary conditions imposed at both ends of the tube. It has been
found that the stability boundaries expand on increasing V1/VT , decreasing W , and
using a more dense fluid in the annulus, and an explanation provided. Furthermore,
a value of the viscosity ratio exists, always below unity, that maximizes the range
in Re for which the steady flow remains stable. In most cases, steady states that
exhibit recirculation are unstable. In all cases with ρ 6 1 the energy analysis showed
that instability is generated by viscosity stratification and the wavelength of the most
critical disturbance is of the order of the tube length, but it does not have a simple
sinusoidal shape.

Similar stability calculations have been performed keeping J , which is independent
of the adopted characteristic velocity, constant. The major differences in the new
results from those in the previous case are that: (i) a stability boundary arises even
at low Re and, thus, the stable domain resembles a triangle; (ii) the two lower
sides of this triangle may intersect each other at very small values of µ making the
convergence of the computations more difficult, and the related critical points have
real eigenvalues; (iii) the wavelength of the neutral disturbances are shorter than
those for constant W and in some cases they may be characterized as short; and
(iv) instability is generated by capillarity or a combination of Reynolds stresses and
capillarity when µ→ 1, whereas these mechanisms seem to prevail for µ < 0.5 and
ρ > 1 when W is kept constant.

Although the present results predict oscillatory flow outside the domains defined by
the neutral curves, certain assumptions need to be removed in order to be able to allow
for large deformations of the interface (beyond the linear regime) and to predict its
breakup and the formation of slugs (i.e. pulsing flow). Some of our results along these
lines have already been reported elsewhere (Kouris & Tsamopoulos 1999), whereas a
thorough study of the nonlinear dynamics of CAF in a straight tube will appear in
Kouris & Tsamopoulos (2001a, b) and a comparative study of solution methods of
CAF in a constricted tube including three-dimensional stability will appear in Kouris
et al. (2000).

This work was partially supported under the EPET II program (Grant number
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